If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+140t+4=0
a = -16; b = 140; c = +4;
Δ = b2-4ac
Δ = 1402-4·(-16)·4
Δ = 19856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19856}=\sqrt{16*1241}=\sqrt{16}*\sqrt{1241}=4\sqrt{1241}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-4\sqrt{1241}}{2*-16}=\frac{-140-4\sqrt{1241}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+4\sqrt{1241}}{2*-16}=\frac{-140+4\sqrt{1241}}{-32} $
| 3x-16-x+6=0 | | 14=-8x-2 | | 2x^2+13x-132=0 | | 3x=2(x+6)+2(x+8) | | -16^2+140t+4=0 | | 8r-6+9r=31 | | 4+4x=12+2x | | 2(3x-16)=2x-8 | | 5x2–3x–8=0 | | x^2+5=60 | | 20x-71=x+43 | | 9x2–2x=0 | | −2(3x−8)=−x+17 | | 49x4121x^2=0 | | x+3÷=5 | | −2+x=−4 | | -26=-4n-6n | | 2x+5=1x+8 | | x^2-5x+6.25=5.75 | | 8(3x-10)=2x+8 | | x-7=3x+12 | | x+96=138 | | x+x60=90 | | 3(1+p)=-5 | | 5-2(3-x)=10 | | b/3-5=-11 | | 5x=2x+3(2x+2) | | 10x-10=67 | | x=1+2/5 | | (4x+7)+(6x+3)=90 | | 5x+10=4+2x | | −2(10+x)=−30 |